Classical Heisenberg model

The Classical Heisenberg model is the n = 3 case of the n-vector model, one of the models used in statistical physics to model ferromagnetism, and other phenomena.

Contents

Definition

It can be formulated as follows: take a d-dimensional lattice, and a set of spins of the unit length

\vec{s}_i \in \mathbb{R}^3, |\vec{s}_i|=1\quad (1),

each one placed on a lattice node.

The model is defined through the following Hamiltonian:

\mathcal{H} = -\sum_{i,j} \mathcal{J}_{ij} \vec{s}_i \cdot \vec{s}_j\quad (2)

with

 \mathcal{J}_{ij} = \begin{cases} J & \mbox{if }i, j\mbox{ are neighbors} \\ 0 & \mbox{else.}\end{cases}

a coupling between spins.

Properties

\vec{S}_{t}=\vec{S}\wedge \vec{S}_{xx}.
This equation is called the continuous classical Heisenberg ferromagnet equation or shortly Heisenberg model and is integrable in the soliton sense. It admits several integrable and nonintegrable generalizations like Landau-Lifshitz equation, Ishimori equation and so on.

See also

References

External links